

White Paper

Title: Implementing STONITH Support in LifeKeeper for Linux Clusters

Revision: B

Date: December 2, 2002

Copyright 2002 by SteelEye Technology, Inc., Mountain View, California

All Rights Reserved. Printed in U.S.A. Confidential, Unpublished Property of SteelEye Technology, Inc.

THIS DOCUMENT AND ALL INFORMATION HEREIN IS THE PROPERTY OF STEELEYE
TECHNOLOGY, INC., AND ALL UNAUTHORIZED USE AND REPRODUCTION IS PROHIBITED

SteelEye Technology and LifeKeeper are registered trademarks and SteelEye is a trademark of SteelEye
Technology, Inc.

Other brand and product names used herein are for identification purposes only and may be trademarks of
their respective companies.

2 Implementing STONITH Support in LifeKeeper for Linux Clusters

Implementing STONITH Support in
LifeKeeper for Linux Clusters

Table of Contents
1. Overview .. 3
2. Audience .. 3
3. LifeKeeper Event Notification... 3
4. Using the "prefailover" Class to Implement STONITH Operations .. 4
5. An Example Using the WTI RPS-10 ... 5
6. Conclusion.. 7

 Implementing STONITH Support in LifeKeeper for Linux Clusters 3

1. Overview
High availability clusters generally require the use of some form of I/O fencing, a technique for ensuring
that only the appropriate system in a cluster has access to a given volume of storage. LifeKeeper for
Linux uses SCSI reservations as its I/O fencing mechanism in a shared storage cluster.

However, many clustering products, particularly those for Linux, have adopted the use of STONITH
(Shoot The Other Node In The Head) devices for I/O fencing. This technique uses an external smart
power switch to control the power to the nodes in the cluster and allows the cluster software to instruct
the switch via a serial or network connection to power off or reboot a cluster node that appears to have
died, thus ensuring that the unhealthy node cannot access or corrupt any shared data.

While we believe that SCSI reservations are a superior technique, particularly for clusters beyond the
simple two-node active/passive configuration, there may be situations in which it would be beneficial for
LifeKeeper to support the use of STONITH devices as an alternative fencing mechanism. This paper
describes an interface for adding STONITH devices to a LifeKeeper cluster. It begins with some
background on LifeKeeper's event notification mechanism, which is the framework where the commands
to control the smart power switch will be placed. General instructions for implementing and configuring
STONITH devices in a LifeKeeper cluster will be given, followed by a specific example using Western
Telematic Inc. (WTI) RPS-10 switches in a two-node cluster.

2. Audience
The information in this paper is intended for those who will be installing and configuring the hardware
and software in a LifeKeeper cluster.

3. LifeKeeper Event Notification
When LifeKeeper detects failure conditions in a cluster, it provides notification using an event alarming
mechanism based on sendevent. The framework allows applications to register programs or scripts so
that they can receive notification of alarm events, and/or perform recovery or error handling actions. The
directory tree under $LKROOT/events corresponds to a set of alarm classes with subdirectories
representing events within each class (the default value of $LKROOT is /opt/LifeKeeper). When a
particular event is detected by LifeKeeper, a sendevent command is issued, specifying the particular class
and event, along with any other relevant data. The sendevent mechanism locates the directory that
represents the class and event, and executes any scripts or programs that are in that directory.

For example, the $LKROOT/events/filesys directory represents the class of alarms associated with file
systems. It may contain subdirectories for each event in that class (badmount, diskfull, noaccess). If one
of these events occurs, any script or program in the event directory will run. The "notify" script in the
$LKROOT/events/filesys/diskfull directory provides an example of how to send email to alert an
administrator that a filesystem is reaching full capacity.

More detailed information about LifeKeeper's event notification mechanism can be found in the
LifeKeeper online help under the topic Advanced Tasks - LifeKeeper Communications - LifeKeeper
Alarming and Recovery. The LifeKeeper sendevent(5) man page also documents details of the alarming
mechanism.

The $LKROOT/events/prefailover class is installed to facilitate node-specific handling of the failure of a
system in a LifeKeeper cluster. This class is triggered early in the failure detection process, before any

4 Implementing STONITH Support in LifeKeeper for Linux Clusters

resource recovery begins. The subdirectories or "events" in this class correspond to the remote systems in
the LifeKeeper cluster. Each directory name is identical to the name of a remote system in the cluster,
and must be manually created to reflect the specific cluster under protection. Scripts or programs may be
placed in each directory to perform actions corresponding to the failure of that particular node.

4. Using the "prefailover" Class to Implement
STONITH Operations
The prefailover class of alarm is triggered when a node in the cluster detects a complete communication
failure with another node in the cluster. If a subdirectory corresponding to the name of the failed node is
present in the $LKROOT/events/prefailover directory, the alarm mechanism will execute any scripts or
programs that reside in the failed node's directory. A script or program can be implemented to send a
message to a smart power switch that controls the failed node, to instruct it to reboot or remove power
from that node. This prevents the impaired node from corrupting data.

For example, in a two-node cluster where one system is named "node1" and the other is named "node2"
the prefailover class directories would be configured as follows:

• On node1, the directory $LKROOT/events/prefailover/node2 will be created.

• On node2, the directory $LKROOT/events/prefailover/node1 will be created.

The directory name must exactly match the system name as known to LifeKeeper (which is what is given
by the output of uname -n). The recommended owner, group, and permissions for the directory are "bin"
"bin" and 775.

Each node will be connected to a smart power switch that controls the opposite node. A script or program
will be put in $LKROOT/events/prefailover/<nodeX> that will send the appropriate message to the
controlled node if a failover is detected. The recommended owner, group, and permissions for the scripts
are "root" "root" and 0500. The name of the script does not matter to LifeKeeper.

 Implementing STONITH Support in LifeKeeper for Linux Clusters 5

5. An Example Using the WTI RPS-10
The WTI RPS-10 (http://www.wti.com/rps-10.htm) is a remote reboot device that can be used to control
AC power to various network devices. A master module can control up to 10 power outlets, and may be
used in conjunction with multiple "satellite" modules. For our example, we will be using two master
modules in a two-node cluster. Each system will have its power cord plugged into a master RPS-10, and
a serial connection to the opposite node's RPS-10. This allows each node to control the power to the
other.

The following example script can be used to send a "poweroff" command to the RPS-10.

 while [$# != 0]
 do
 case "$1" in
 -n)
 shift
 MACH=$1
 ;;
 -n*)
 MACH=`echo "$1" | sed "s/ -̂n//"`
 ;;
 esac
 shift
 done

 if ["$MACH" = ""]
 then
 DIR=`dirname $0`
 MACH=`basename $DIR ̀
 fi

 echo "STONITH: class prefailover, removing power from $MACH at `date`"

stty -F /dev/ttyS0 1:0:8bd:0:3:1c:7f:15:4:5:1:0:11:13:1a:0:12:f:17:16:
:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

 echo ATDT >/dev/ttyS0
 MSG="^B^X^X^B^X^X00^M"
 echo $MSG >/dev/ttyS0

 if [$? -ne 0]
 then
 echo "STONITH operation failed."
 exit 1
 fi
 exit 0

When sendevent invokes this script, it supplies the name of the failed node in the -n option on the
command line. Any output from the script to stdout or stderr will be automatically directed to the main
LifeKeeper log.

6 Implementing STONITH Support in LifeKeeper for Linux Clusters

This script uses "stty" to initialize the RPS-10 and then sends the specific control string to the serial
connection (/dev/ttyS0) to remove power from the failed node.

An alternative implementation is to use the stonith utility supplied by the open-source HA "heartbeat"
project (http://www.linux-ha.org/heartbeat). This utility implements support for various smart power
switches. It is delivered in a separate standalone package, and has a command line interface. Here is an
example script using this approach (the stonith command performs a reboot of the controlled system
rather than a poweroff).

 while [$# != 0]
 do
 case "$1" in
 -n)
 shift
 MACH=$1
 ;;
 -n*)
 MACH=`echo "$1" | sed "s/ -̂n//"`
 ;;
 esac
 shift
 done

 if ["$MACH" = ""]
 then

 DIR=`dirname $0`
 MACH=`basename $DIR ̀
 fi

 echo "STONITH: class prefailover, removing power from $MACH at `date`"
 stonith -t rps10 -p "/dev/ttyS0 $MACH 0" $MACH

 if [$? -ne 0]
 then
 echo "STONITH operation failed."
 exit 1
 fi
 exit 0

 Implementing STONITH Support in LifeKeeper for Linux Clusters 7

6. Conclusion

The "prefailover" alarm class in LifeKeeper can be used to detect failure scenarios where it may be
appropriate to initiate STONITH operations in a LifeKeeper cluster. Directories named after remote
systems in the cluster can be created in the $LKROOT/events/prefailover directory, and a script or
program to operate a smart power switch can reboot or power off a node that has failed. The exact
implementation of this script or program depends on the particular device that is being used, and is
outside the scope of the LifeKeeper product. Sample scripts for the WTI RPS-10 example described in
this paper can be found on the SteelEye web site (http://www.steeleye.com/) in the Download area on the
"Optional LifeKeeper Extensions" page.

